12.6 Lecture: Cylinders and Quadric Surfaces

Jeremiah Southwick
(Let's be honest though, the slides are by Robert Vandermolen)

Spring 2019

CONTOUR

GRAPHING!

Two calculus classes later we are really good at graphing in 2-dimensions, so let's use this to our advantage...

Instead of drawing the whole picture, we will first just draw slices of the picture

Let's try it with the following surface first:

$$
x^{2}+y^{2}+z^{2}=9
$$

CONTOUR GRAPHING！

We begin by choosing different values for z and graphing the
z=0

 function＇s

Why didn＇t I pick values of z past 3 or below -3 ？
$x^{2}+y^{2}+z^{2}=9$

CONTOUR GRAPHING!

Now we put the contours together!
$x^{2}+y^{2}+z^{2}=9$

CONTOUR GRAPHING!

We could have done the same thing by picking different values for x , and graphing the remaining coordinates
$x^{2}+y^{2}+z^{2}=9$

CONTOUR GRAPHING!

Again putting the contours together we get:
$x^{2}+y^{2}+z^{2}=9$

contave Graphing!

For this function when we choose different values of x the function doesn't change
$x=0$

$x=1$

$$
x=-1
$$

$$
x=3
$$

$z^{2}+y^{2}=9$

Look they are all the same!

CONTOUR GRAPHING!

When we put together the contours the picture reveals itself
$z^{2}+y^{2}=9$

It is a cylinder!

QUADRATIC SURFACES!

A basic Quadratic Surface has the form:

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0
$$

where $A, B, C, D, E, F, G, H, I, J$ are numbers and quite often a lot of them are zero!

ELLIPTIC

PARABOLOID!
 $$
z=0
$$

Let's do the same thing.
We will start with choosing values for z

$z=x^{2}+y^{2}=2$

Why did I not choose negative values?

ELLIPTIC Parabolald!

Now we put the contours together!

$z=x^{2}+y^{2}$

ELLIPTIC

PARABOLOID!
Let's do the same thing.
What if we did it this time choosing values for x
$z=x^{2}+y^{2}$

ELLIPTIC PARABOLOID!

Now we put the contours together!

$z=x^{2}+y^{2}$

y+

Hyperbolic Parabolaid!

Let's do the same thing.

Choosing values for x
$z=y^{2}-x^{2}$

Choosing values for y

Choosing values for z

Hyperbolic PARABOLOID!

Putting it together!

$$
z=y^{2}-x^{2}
$$

Hyperbolic PARABOLOID！

 The parabola $z=\frac{c}{b^{2}} y^{2}$ in the $y z$ plane Putting it together！
$z=y^{2}-x^{2}$

The parabola $z=-\frac{c}{a^{2}} x^{2}$
in the $x z$－plane

Hyperbolic PARABOLOID!

Putting it together!
$z=y^{2}-x$

NOW YOU TRY!

Use this method to draw the following curve:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$

It is called an
Elliptic Cone

ANSWER!

ANSWER!

The line $z=-\frac{c}{b} y \quad \begin{gathered}z\end{gathered} \quad$ The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the $y z$-plane $z=c \quad$ in the plane $z=c$

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$

ANSWER！ The line $z=-\frac{c}{b} y$
in the $y z$－plane $z=c$

ANSWER!

